How Far (MCQ)

1. The reversible reaction of nitrogen and hydrogen to form ammonia is shown below.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

In the equilibrium mixture, the partial pressure of N_{2} is 18.75 MPa and the partial pressure of H_{2} is 2.50 MPa .
The total pressure is 25 MPa .
What is the value of K_{p}, in MPa^{-2} ?

A 1.2×10^{-4}
B 0.048
C 0.075
D 21

2. Which statement(s) is/are correct when a catalyst is added to a system in dynamic equilibrium?

1 The rates of the forward and reverse reactions increase by the same amount.
2 The concentrations of the reactants and products do not change.
3 The value of K_{c} increases

A 1, 2 and 3
B Only 1 and 2
C Only 2 and 3
D Only 1

Your answer
3. The reversible reaction of sulfur dioxide and oxygen to form sulfur trioxide is shown below.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

An equilibrium mixture contains $2.4 \mathrm{~mol} \mathrm{SO}_{2}, 1.2 \mathrm{~mol} \mathrm{O}_{2}$ and $0.4 \mathrm{~mol} \mathrm{SO}_{3}$. The total pressure is 250 atm.

What is the partial pressure of SO_{3} ?

A $\quad 15 \mathrm{~atm}$
B 25 atm
C $\quad 100 \mathrm{~atm}$
D 200 atm

Your answer
4. A mixture of N_{2} and O_{2} gases has a total pressure of 1.42 atm .

The mole fraction of N_{2} is 0.700 .
What is the partial pressure, in atm, of O_{2} in the mixture?

A 0.211
B 0.426
C 0.493
D 0.994

Your answer \square
5. Ammonia, NH_{3}, is formed in the reversible reaction below.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

A mixture at equilibrium contains $0.320 \mathrm{~mol}_{2}, 0.960 \mathrm{~mol} \mathrm{H}_{2}$ and $0.120 \mathrm{~mol} \mathrm{NH}_{3}$.
What is the mole fraction of H_{2} in the equilibrium mixture?

A 0.279
B 0.686
C $\quad 0.837$
D $\quad 2.06$

Your answer \square
6. The equilibrium system below is set up.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \quad \Delta H=+14 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The equilibrium system is compressed at constant temperature.
What is the effect on the value of K_{c} and the amount, in moles, of $\mathrm{CH}_{3} \mathrm{OH}$?

	$\boldsymbol{K}_{\mathbf{c}}$	Amount in moles of $\mathbf{C H}_{3} \mathbf{O H}$
A	increases	increases
B	decreases	decreases
C	no change	no change
\mathbf{D}	no change	increases

Your answer \square
7. Two students set up the equilibrium system below.

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})
$$

The students titrated samples of the equilibrium mixture with sodium hydroxide, $\mathrm{NaOH}(\mathrm{aq})$, to determine the concentration of $\mathrm{CH}_{3} \mathrm{COOH}$.

The students used their results to calculate a value for K_{c}.
The students' values for K_{c} were different.
Which of the reason(s) below could explain why the calculated values for K_{c} were different?
1: Each student carried out their experiment at a different temperature.
2: Each student used a different concentration of $\mathrm{NaOH}(\mathrm{aq})$ in their titration.
3: Each student titrated a different volume of the equilibrium mixture.
A. 1, 2 and 3
B. Only 1 and 2
C. Only 2 and 3
D. Only 1

Your answer \square

5.1.2 How Far MCQ

8. $\quad \mathrm{NO}(\mathrm{g}), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ exist in equilibrium:
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
At room temperature and pressure, the equilibrium lies well to the right-hand side.
Which of the following could be the equilibrium constant for this equilibrium?
A. $1.54 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
B. $6.50 \times 10^{2} \mathrm{~mol} \mathrm{dm}^{-3}$
C. $1.54 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
D. $6.50 \times 10^{2} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$

Your answer

Mark scheme - How Far (MCQ)

Question	Answer/Indicative content	Marks	Guidance
1	B	$\begin{gathered} 1 \\ (\mathrm{AO} 2.6) \end{gathered}$	
	Total	1	
2	B	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	
	Total	1	
3	B	$\begin{gathered} 1 \text { (AO } \\ 1.3 \text {) } \end{gathered}$	Examiner's Comments This was a very successful multiple choice question for nearly all candidates.
	Total	1	
4	B	1	ALLOW 0.426 in the box
	Total	1	
5	B	1	
	Total	1	
6	D	1	
	Total	1	
7	D	1	
	Total	1	
8	D	1	
	Total	1	

